Samuel J. Yang

Samuel J. Yang completed a Ph.D. in Electrical Engineering at Stanford University, where his research in the labs of Karl Deisseroth and Gordon Wetzstein focused on computational imaging and display, the co-design and optimization of optics hardware and data processing alogrithms. He was supported by a NSF Graduate Research Fellowship and a NDSEG Graduate Fellowship.

About

About

I received a B.S. in Electrical Engineering from Caltech, studying engineering physics and optics in Changhuei Yang's lab.

In 2013, I received a M.S. in Electrical Engineering from Stanford, studying machine learning, image processing and computer vision.

In 2015, at Google Research, I applied deep learning methods to images as a Software Engineering Intern.

In 2014, at Google [x], I worked with optical physicists to design and implement imaging instrumentation hardware as an intern.

In 2013, at Pelican Imaging, I explored computational photography applications as a research intern.

I volunteer for Science Olympiad after learning to program and building some robots myself a long time ago. I also enjoy photography, and was a teaching assistant for Stanford's Digital Photography class.

I have also been involved with several interesting team efforts as well, including designing and building an autonomous robot (second place at Robogames 2009), developing a functional license-plate-reading iPhone app during a 24-hour hackathon, designing and constructing a net-zero solar-powered smart home for the Solar Decathlon competition, and participating in and winning the $10,000 first place prize in a early-stage technology commercialization plan competition.

Contact: samuely (at) alumni (dot) stanford (dot) edu

News

March 2016: I presented this work at Focus on Microscopy 2016.

February 21, 2016: Added two computer vision/machine learning projects, real-time tail/eye tracking for zebrafish virtual reality and depth-assisted portrait perspective correction.

February 15, 2016: Our multifiber recording paper is out in Nature Methods, with software released on GitHub.

December 2015: Our light sheet microscopy paper is out at Cell.

December 2015: My paper is out at Optics express.

October 2015: I presented this poster at SFN 2015. I also contributed to work in this poster.

August 2015: Our adaptive spectral projector was presented at SIGGRAPH Asia 2015.

Publications

    I am also on Google Scholar, ResearchGate and GitHub.

  1. Kim, C.*, Yang, S.*, Pichamoorthy, N., Young, N., Kauvar, I., Jennings, J., Lerner, T., Berndt, A., Lee, S.Y., Ramakrishnan, C., Davidson, T., Inoue, M., Bito, H., & Deisseroth, K. (2016). Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nature Methods, 13(4). *co-first authors [ PDF | supplement | link | software ]
  2. Tomer, R., Lovett-Barron, M., Kauvar, I., Andalman, A., Burns, V.M., Sankaran, S., Grosenick, L., Broxton, M., Yang, S. & Deisseroth, K. (2015). SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function. Cell, 163(7), 0092-8674. [ PDF | link ]
  3. Yang, S., Allen, W., Kauvar, I., Andalman, A., Young, N., Kim, C., Marshel, J., Wetzstein, G., & Deisseroth, K. (2015). Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Optics express, 23(25), 32573-32581. [ PDF | link ]
  4. Kauvar, I., Yang, S., Shi, L., McDowall, I., & Wetzstein, G. (2015). Adaptive Color Display via Perceptually-driven Factored Spectral Projection. ACM SIGGRAPH Asia (Transactions on Graphics). [ PDF | link ]
  5. Cohen, N., Yang, S., Andalman, A., Broxton, M., Grosenick, L., Deisseroth, K., Horowitz, M., & Levoy, M. (2014). Enhancing the performance of the light field microscope using wavefront coding. Optics express, 22(20), 24817-24839. [ PDF | link ]
  6. Broxton, M., Grosenick, L., Yang, S., Cohen, N., Andalman, A., Deisseroth, K., & Levoy, M. (2013). Wave optics theory and 3-D deconvolution for the light field microscope. Optics express, 21(21), 25418-25439. [ PDF | link ]
  7. Lee, S. A., Leitao, R., Zheng, G., Yang, S., Rodriguez, A., & Yang, C. (2011). Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis. PloS one, 6(10), e26127. [ PDF | link ]
  8. Zheng, G.*, Lee, S. A.*, Yang, S.*, & Yang, C. (2010). Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab on a Chip, 10(22), 3125-3129. *co-first authors [ PDF | link ]

In-progress/unpublished work includes depth-assisted perspective correction for portrait photography, holographic illumination for all-optical neurophysiology, the application of light field microscopy to 3D calcium imaging, and a robust real time zebrafish high speed tail tracking approach (computer vision and machine learning in OpenCV/Matlab) for zebrafish virtual reality.